Selasa, 11 Januari 2011

Beranda » MOSFET

MOSFET

Introduction:-


The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, orMOS FET) is a device used to amplify or switch electronic signals. The basic principle of the device was first proposed by Julius Edgar Lilienfeld in 1925. The MOSFET includes a channel ofn-type or p-type semiconductor material (see article on semiconductor devices), and is accordingly called an NMOSFET or a PMOSFET (also commonly nMOS, pMOS). It is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistorwas at one time much more common.

Diagramatic representation...



http://img198.imageshack.us/img198/7159/mosfet.jpg

Circuit symbol:-

http://img5.imageshack.us/img5/6906/schematicsymbolsmosfet.png

MOSFET operation:-

A traditional metal–oxide–semiconductor (MOS) structure is obtained by growing a layer of silicon dioxide (SiO2) on top of a silicon substrate and depositing a layer of metal or polycrystalline silicon (the latter is commonly used). As the silicon dioxide is a dielectric material, its structure is equivalent to a planar capacitor, with one of the electrodes replaced by a semiconductor.

When a voltage is applied across a MOS structure, it modifies the distribution of charges in the semiconductor. If we consider a P-type semiconductor (with NA the density of acceptors, p the density of holes; p = NA in neutral bulk), a positive voltage, VGB, from gate to body (see figure) creates a depletion layer by forcing the positively charged holes away from the gate-insulator/semiconductor interface, leaving exposed a carrier-free region of immobile, negatively charged acceptor ions (see doping (semiconductor)). If VGB is high enough, a high concentration of negative charge carriers forms in an inversion layer located in a thin layer next to the interface between the semiconductor and the insulator. Unlike the MOSFET, where the inversion layer electrons are supplied rapidly from the source/drain electrodes, in the MOS capacitor they are produced much more slowly by thermal generation through carrier generation and recombination centers in the depletion region. Conventionally, the gate voltage at which the volume density of electrons in the inversion layer is the same as the volume density of holes in the body is called the threshold voltage.

This structure with P-type body is the basis of the N-type MOSFET, which requires the addition of an N-type source and drain regions.

Modes of operation

The operation of a MOSFET can be separated into three different modes, depending on the voltages at the terminals. In the following discussion, a simplified algebraic model is used that is accurate only for old technology. Modern MOSFET characteristics require computer models that have rather more complex behavior. For example, see Liu and the device modeling list at Designers-guide.org.

For an enhancement-mode, n-channel MOSFET, the three operational modes are:

Cutoff, subthreshold, or weak-inversion mode When VGS <>th: where Vth is the threshold voltage of the device. According to the basic threshold model, the transistor is turned off, and there is no conduction between drain and source. In reality, the Boltzmann distribution of electron energies allows some of the more energetic electrons at the source to enter the channel and flow to the drain, resulting in a subthreshold current that is an exponential function of gate–source voltage. While the current between drain and source should ideally be zero when the transistor is being used as a turned-off switch, there is a weak-inversion current, sometimes called subthreshold leakage.In weak inversion the current varies exponentially with gate-to-source bias VGS as given approximately by:
http://img10.imageshack.us/img10/7092/5b9727f63fc863196c6f4e0.png

, where ID0 = current at VGS = Vth and the slope factor n is given by n = 1 + CD/ COX, with CD = capacitance of the depletion layer and COX = capacitance of the oxide layer. In a long-channel device, there is no drain voltage dependence of the current once VDS > > VT, but as channel length is reduced drain-induced barrier lowering introduces drain voltage dependence that depends in a complex way upon the device geometry (for example, the channel doping, the junction doping and so on). Frequently, threshold voltage Vth for this mode is defined as the gate voltage at which a selected value of current ID0 occurs, for example, ID0 = 1 μA, which may not be the same Vth-value used in the equations for the following modes. Some micropower analog circuits are designed to take advantage of subthreshold conduction. By working in the weak-inversion region, the MOSFETs in these circuits deliver the highest possible transconductance-to-current ratio, namely: gm / ID = 1 / (nVT), almost that of a bipolar transistor. The subthreshold I-V relation depends exponentially upon threshold voltage, introducing a strong dependence on any manufacturing variation that affects threshold voltage; for example: variations in oxide thickness, junction depth, or body doping that change the degree of drain-induced barrier lowering. The resulting sensitivity to fabricational variations complicates optimization of circuits operating in the subthreshold mode.

Triode mode or linear region (also known as the ohmic mode)
When VGS > Vth and VDS < ( VGS - Vth )
The transistor is turned on, and a channel has been created which allows current to flow between the drain and the source. The MOSFET operates like a resistor, controlled by the gate voltage relative to both the source and drain voltages. The current from drain to source is modeled as:

http://img30.imageshack.us/img30/1988/a713a6eb38e5a4f0531a014.png
where μn is the charge-carrier effective mobility, W is the gate width,L is the gate length and Cox is the gate oxide capacitance per unit area. The transition from the exponential subthreshold region to the triode region is not as sharp as the equations suggest.
Saturation or active mode

When VGS > Vth and VDS > ( VGS - Vth )The switch is turned on, and a channel has been created, which allows current to flow between the drain and source. Since the drain voltage is higher than the gate voltage, the electrons spread out, and conduction is not through a narrow channel but through a broader, two- or three-dimensional current distribution extending away from the interface and deeper in the substrate. The onset of this region is also known as pinch-off to indicate the lack of channel region near the drain. The drain current is now weakly dependent upon drain voltage and controlled primarily by the gate–source voltage, and modeled very approximately as:

http://img132.imageshack.us/img132/1897/ea8ecd051837b6b88bd5036.png
The additional factor involving λ, the channel-length modulation parameter, models current dependence on drain voltage due to the Early effect, or channel length modulation. According to this equation, a key design parameter, the MOSFET transconductance is:
http://img15.imageshack.us/img15/864/4ffd9e4240ecc5b95c4bf7f.png, where the combination Vov = VGS - Vth is called theoverdrive voltage. Another key design parameter is the MOSFET output resistance rO given by:
http://img15.imageshack.us/img15/1252/5b150eff3803082f6585ffd.png
. If λ is taken as zero, an infinite output resistance of the device results that leads to unrealistic circuit predictions, particularly in analog circuits.As the channel length becomes very short, these equations become quite inaccurate. New physical effects arise. For example, carrier transport in the active mode may become limited by velocity saturation. When velocity saturation dominates, the saturation drain current is more nearly linear than quadratic in VGS. At even shorter lengths, carriers transport with near zero scattering, known as quasi-ballistic transport. In addition, the output current is affected by drain-induced barrier lowering of the threshold voltage.

SOURCE: www.electronicseveryday.blogspot.com

Tidak ada komentar:

Posting Komentar

Diberdayakan oleh Blogger.